During rheumatoid arthritis (RA) treatment, long-term injection of antitumor necrosis factor α antibodies (anti-TNFα Abs) may induce on-target toxicities, including severe infections (tuberculosis [TB] or septic arthritis) and malignancy. Here, we used an immunoglobulin
G1 (IgG1) hinge as an Ab lock to cover the TNFα-binding site of Infliximab by linking it with matrix metalloproteinase (MMP) -2/9 substrate to generate pro-Infliximab that can be specif- ically activated in the RA region to enhance the selectivity and safety of treatment. The Ab lock significantly inhibits the TNFα binding and reduces the anti-idiotypic (anti-Id) Ab binding to pro-Infliximab by 395-fold, 108-fold compared with Infliximab, respectively, and MMP-2/9 can completely restore the TNFα neutralizing ability of pro-Infliximab to block TNFα down- stream signaling. Pro-Infliximab was only selectively activated in the disease site (mouse paws) and presented similar pharmacokinetics (PKs) and bio-distribution to Infliximab. Fur- thermore, pro-Infliximab not only provided equivalent therapeutic efficacy to Infliximab but also maintained mouse immunity against Listeria infection in the RA mouse model, leading to a significantly higher survival rate (71%) than that of the Infliximab treatment group (0%). The high-selectivity pro-Infliximab maintains host immunity and keeps the original therapeu- tic efficiency, providing a novel strategy for RA therapy.

 

Read the article here

In response to the current outbreak of coronavirus disease (COVID-19), Biomedcode has implemented measures to help ensure the health and safety of our employees as well as their families but to also ensure the welfare of the mice under our care as well as the uninterrupted provision of services under the same high standards of quality.

Greece is currently implementing a “Stay At Home” order, intended to minimize the spread of the disease. In this context Biomedcode has adjusted its operation so that personnel that can work from home are doing so, while personnel essential for the proper operation of our animal facilities as well as the execution of contracted research activities, are provided with the necessary documentation to ensure their on-site presence. 

With a long-standing mission to support biomedical research and drug development, Biomedcode is closely monitoring the scientific findings of this pandemic and is open to contributing with its  preclinical mouse models in the global effort to fight this pandemic.

We will continue to take all necessary precautions and we will be happy to address any questions or concerns you may at info@biomedcode.com.

 

 

Targeting TNF-α as a treatment modality has shown tremendous success, however there are several limitations associated with the current anti-TNF-α biologic drugs including: immunogenicity, life-threatening infections, resistance to treatment, complexity of manufacture and cost of treatment. Ubah et al.  report the in vivo efficacy of novel anti-TNF-α formats generated from molecular engineering of variable new antigen receptors (VNARs), originally derived from the immune system of an immunized nurse shark.

Read More